Abstract
This thesis is concerned with operational analysis of UML 2.x sequence diagram specifications. By operational analysis we mean analysis based on a characterization of the executions of sequence diagrams, or in other words an operational semantics for sequence diagrams. We define two methods for analysis of sequence diagram specifications – refinement verification and refinement testing – and both are implemented in an analysis tool we have named ‘Escalator'. Further, we make the first steps in the direction of extending our approach with support for availability analysis. In order to facilitate operational analysis, we define an operational semantics for UML 2.x sequence diagrams. The operational semantics is loyal to the intended semantics of UML, and is proven to be sound and complete with respect to the denotational semantics for sequence diagrams defined in STAIRS – a framework for stepwise development based on refinement of sequence diagram specifications. The operational semantics has a formalized meta-level, on which we define execution strategies. This meta-level allows us to make distinctions between positive and negative behavior, between potential and universal behavior, and between potential and mandatory choice, all of which are inherently difficult in an operational semantics. Based on the operational semantics and its formalized meta-level, we define trace generation, test generation and test execution. Further, based on a formalization of refinement in STAIRS, the trace generation is used to devise a method for refinement verification, and the test generation and the test execution are used to define a method for refinement testing. Both are methods for investigating whether or not a sequence diagram specification is a correct refinement of another sequence diagram specification. The operational semantics, the refinement verification and the refinement testing are implemented with the term rewriting language Maude, and these implementations are integrated in the Escalator tool. In addition, Escalator provides a graphical user interface for working with sequence diagram specifications and for running the analyses. In order to facilitate availability analysis, we define a conceptual model for service availability where the basic properties of availability are identified. Further, we extend the operational semantics with support for one class of these basic properties, namely real-time properties, and outline how the operation semantics extended with time can be applied to make methods for timed analysis of sequence diagram specifications.A sequence diagram shows object interactions arranged in time sequence. It depicts the objects involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. Sequence diagrams are typically associated with use case realizations in the logical view of the system under development. Sequence diagrams are sometimes called event diagrams or event scenarios.
A sequence diagram is a type of interaction diagram because it describes how—and in what order—a group of objects works together. These diagrams are used by software developers and business professionals to understand requirements for a new system or to document an existing process. Sequence Diagram is an interaction diagram that details how operations are carried out - what messages are sent and when. Sequence diagrams are organized according to time. The time progresses as you go down the page. The objects involved in the operation are listed from left to right according to when they take part in the message sequence. You can edit this template and create your own diagram. Creately diagrams can be exported and added to Word, PPT (powerpoint), Excel, Visio or any other document. Use PDF export for high quality prints and SVG export for large sharp images or embed your diagrams anywhere with the Creately viewer.
A sequence diagram shows, as parallel vertical lines (lifelines), different processes or objects that live simultaneously, and, as horizontal arrows, the messages exchanged between them, in the order in which they occur. This allows the specification of simple runtime scenarios in a graphical manner.
Diagram building blocks[edit]
If the lifeline is that of an object, it demonstrates a role. Leaving the instance name blank can represent anonymous and unnamed instances.
Messages, written with horizontal arrows with the message name written above them, display interaction. Solid arrow heads represent synchronous calls, open arrow heads represent asynchronous messages, and dashed lines represent reply messages.[1]If a caller sends a synchronous message, it must wait until the message is done, such as invoking a subroutine. If a caller sends an asynchronous message, it can continue processing and doesn't have to wait for a response. Asynchronous calls are present in multithreaded applications, event-driven applications and in message-oriented middleware. Activation boxes, or method-call boxes, are opaque rectangles drawn on top of lifelines to represent that processes are being performed in response to the message (ExecutionSpecifications in UML).
Objects calling methods on themselves use messages and add new activation boxes on top of any others to indicate a further level of processing. If an object is destroyed (removed from memory), an X is drawn on bottom of the lifeline, and the dashed line ceases to be drawn below it. It should be the result of a message, either from the object itself, or another.
A message sent from outside the diagram can be represented by a message originating from a filled-in circle (found message in UML) or from a border of the sequence diagram (gate in UML).
UML has introduced significant improvements to the capabilities of sequence diagrams. Most of these improvements are based on the idea of interaction fragments[2] which represent smaller pieces of an enclosing interaction. Multiple interaction fragments are combined to create a variety of combined fragments,[3] which are then used to model interactions that include parallelism, conditional branches, optional interactions.
References[edit]
- ^OMG (2011). OMG Unified Modeling Language (OMG UML), Superstructure, V2.4.1, p. 507.
- ^OMG (2008). OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2, p. 485.
- ^OMG (2007). OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2. p. 467.
External links[edit]
Wikimedia Commons has media related to Sequence diagrams. |
- UML Distilled by Martin Fowler
- Current UML Specification by Object Management Group (OMG)
- Introduction to UML 2 Sequence Diagrams by Scott W. Ambler.
- A Quick Introduction to UML Sequence Diagrams by Yanic Inghelbrecht
Abstract
This thesis is concerned with operational analysis of UML 2.x sequence diagram specifications. By operational analysis we mean analysis based on a characterization of the executions of sequence diagrams, or in other words an operational semantics for sequence diagrams. We define two methods for analysis of sequence diagram specifications – refinement verification and refinement testing – and both are implemented in an analysis tool we have named ‘Escalator'. Further, we make the first steps in the direction of extending our approach with support for availability analysis. In order to facilitate operational analysis, we define an operational semantics for UML 2.x sequence diagrams. The operational semantics is loyal to the intended semantics of UML, and is proven to be sound and complete with respect to the denotational semantics for sequence diagrams defined in STAIRS – a framework for stepwise development based on refinement of sequence diagram specifications. The operational semantics has a formalized meta-level, on which we define execution strategies. This meta-level allows us to make distinctions between positive and negative behavior, between potential and universal behavior, and between potential and mandatory choice, all of which are inherently difficult in an operational semantics. Based on the operational semantics and its formalized meta-level, we define trace generation, test generation and test execution. Further, based on a formalization of refinement in STAIRS, the trace generation is used to devise a method for refinement verification, and the test generation and the test execution are used to define a method for refinement testing. Both are methods for investigating whether or not a sequence diagram specification is a correct refinement of another sequence diagram specification. The operational semantics, the refinement verification and the refinement testing are implemented with the term rewriting language Maude, and these implementations are integrated in the Escalator tool. In addition, Escalator provides a graphical user interface for working with sequence diagram specifications and for running the analyses. In order to facilitate availability analysis, we define a conceptual model for service availability where the basic properties of availability are identified. Further, we extend the operational semantics with support for one class of these basic properties, namely real-time properties, and outline how the operation semantics extended with time can be applied to make methods for timed analysis of sequence diagram specifications.A sequence diagram shows object interactions arranged in time sequence. It depicts the objects involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. Sequence diagrams are typically associated with use case realizations in the logical view of the system under development. Sequence diagrams are sometimes called event diagrams or event scenarios.
A sequence diagram is a type of interaction diagram because it describes how—and in what order—a group of objects works together. These diagrams are used by software developers and business professionals to understand requirements for a new system or to document an existing process. Sequence Diagram is an interaction diagram that details how operations are carried out - what messages are sent and when. Sequence diagrams are organized according to time. The time progresses as you go down the page. The objects involved in the operation are listed from left to right according to when they take part in the message sequence. You can edit this template and create your own diagram. Creately diagrams can be exported and added to Word, PPT (powerpoint), Excel, Visio or any other document. Use PDF export for high quality prints and SVG export for large sharp images or embed your diagrams anywhere with the Creately viewer.
A sequence diagram shows, as parallel vertical lines (lifelines), different processes or objects that live simultaneously, and, as horizontal arrows, the messages exchanged between them, in the order in which they occur. This allows the specification of simple runtime scenarios in a graphical manner.
Diagram building blocks[edit]
If the lifeline is that of an object, it demonstrates a role. Leaving the instance name blank can represent anonymous and unnamed instances.
Messages, written with horizontal arrows with the message name written above them, display interaction. Solid arrow heads represent synchronous calls, open arrow heads represent asynchronous messages, and dashed lines represent reply messages.[1]If a caller sends a synchronous message, it must wait until the message is done, such as invoking a subroutine. If a caller sends an asynchronous message, it can continue processing and doesn't have to wait for a response. Asynchronous calls are present in multithreaded applications, event-driven applications and in message-oriented middleware. Activation boxes, or method-call boxes, are opaque rectangles drawn on top of lifelines to represent that processes are being performed in response to the message (ExecutionSpecifications in UML).
Objects calling methods on themselves use messages and add new activation boxes on top of any others to indicate a further level of processing. If an object is destroyed (removed from memory), an X is drawn on bottom of the lifeline, and the dashed line ceases to be drawn below it. It should be the result of a message, either from the object itself, or another.
A message sent from outside the diagram can be represented by a message originating from a filled-in circle (found message in UML) or from a border of the sequence diagram (gate in UML).
UML has introduced significant improvements to the capabilities of sequence diagrams. Most of these improvements are based on the idea of interaction fragments[2] which represent smaller pieces of an enclosing interaction. Multiple interaction fragments are combined to create a variety of combined fragments,[3] which are then used to model interactions that include parallelism, conditional branches, optional interactions.
References[edit]
- ^OMG (2011). OMG Unified Modeling Language (OMG UML), Superstructure, V2.4.1, p. 507.
- ^OMG (2008). OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2, p. 485.
- ^OMG (2007). OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2. p. 467.
External links[edit]
Wikimedia Commons has media related to Sequence diagrams. |
- UML Distilled by Martin Fowler
- Current UML Specification by Object Management Group (OMG)
- Introduction to UML 2 Sequence Diagrams by Scott W. Ambler.
- A Quick Introduction to UML Sequence Diagrams by Yanic Inghelbrecht